3.17.63 \(\int \frac {1}{(a+b x)^{3/2} (c+d x)^{5/4}} \, dx\) [1663]

Optimal. Leaf size=222 \[ -\frac {2}{(b c-a d) \sqrt {a+b x} \sqrt [4]{c+d x}}-\frac {6 d \sqrt {a+b x}}{(b c-a d)^2 \sqrt [4]{c+d x}}+\frac {6 \sqrt [4]{b} \sqrt {-\frac {d (a+b x)}{b c-a d}} E\left (\left .\sin ^{-1}\left (\frac {\sqrt [4]{b} \sqrt [4]{c+d x}}{\sqrt [4]{b c-a d}}\right )\right |-1\right )}{(b c-a d)^{5/4} \sqrt {a+b x}}-\frac {6 \sqrt [4]{b} \sqrt {-\frac {d (a+b x)}{b c-a d}} F\left (\left .\sin ^{-1}\left (\frac {\sqrt [4]{b} \sqrt [4]{c+d x}}{\sqrt [4]{b c-a d}}\right )\right |-1\right )}{(b c-a d)^{5/4} \sqrt {a+b x}} \]

[Out]

-2/(-a*d+b*c)/(d*x+c)^(1/4)/(b*x+a)^(1/2)-6*d*(b*x+a)^(1/2)/(-a*d+b*c)^2/(d*x+c)^(1/4)+6*b^(1/4)*EllipticE(b^(
1/4)*(d*x+c)^(1/4)/(-a*d+b*c)^(1/4),I)*(-d*(b*x+a)/(-a*d+b*c))^(1/2)/(-a*d+b*c)^(5/4)/(b*x+a)^(1/2)-6*b^(1/4)*
EllipticF(b^(1/4)*(d*x+c)^(1/4)/(-a*d+b*c)^(1/4),I)*(-d*(b*x+a)/(-a*d+b*c))^(1/2)/(-a*d+b*c)^(5/4)/(b*x+a)^(1/
2)

________________________________________________________________________________________

Rubi [A]
time = 0.16, antiderivative size = 222, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 8, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.421, Rules used = {53, 65, 313, 230, 227, 1214, 1213, 435} \begin {gather*} -\frac {6 \sqrt [4]{b} \sqrt {-\frac {d (a+b x)}{b c-a d}} F\left (\left .\text {ArcSin}\left (\frac {\sqrt [4]{b} \sqrt [4]{c+d x}}{\sqrt [4]{b c-a d}}\right )\right |-1\right )}{\sqrt {a+b x} (b c-a d)^{5/4}}+\frac {6 \sqrt [4]{b} \sqrt {-\frac {d (a+b x)}{b c-a d}} E\left (\left .\text {ArcSin}\left (\frac {\sqrt [4]{b} \sqrt [4]{c+d x}}{\sqrt [4]{b c-a d}}\right )\right |-1\right )}{\sqrt {a+b x} (b c-a d)^{5/4}}-\frac {6 d \sqrt {a+b x}}{\sqrt [4]{c+d x} (b c-a d)^2}-\frac {2}{\sqrt {a+b x} \sqrt [4]{c+d x} (b c-a d)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/((a + b*x)^(3/2)*(c + d*x)^(5/4)),x]

[Out]

-2/((b*c - a*d)*Sqrt[a + b*x]*(c + d*x)^(1/4)) - (6*d*Sqrt[a + b*x])/((b*c - a*d)^2*(c + d*x)^(1/4)) + (6*b^(1
/4)*Sqrt[-((d*(a + b*x))/(b*c - a*d))]*EllipticE[ArcSin[(b^(1/4)*(c + d*x)^(1/4))/(b*c - a*d)^(1/4)], -1])/((b
*c - a*d)^(5/4)*Sqrt[a + b*x]) - (6*b^(1/4)*Sqrt[-((d*(a + b*x))/(b*c - a*d))]*EllipticF[ArcSin[(b^(1/4)*(c +
d*x)^(1/4))/(b*c - a*d)^(1/4)], -1])/((b*c - a*d)^(5/4)*Sqrt[a + b*x])

Rule 53

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n + 1
)/((b*c - a*d)*(m + 1))), x] - Dist[d*((m + n + 2)/((b*c - a*d)*(m + 1))), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 227

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[EllipticF[ArcSin[Rt[-b, 4]*(x/Rt[a, 4])], -1]/(Rt[a, 4]*Rt[
-b, 4]), x] /; FreeQ[{a, b}, x] && NegQ[b/a] && GtQ[a, 0]

Rule 230

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Dist[Sqrt[1 + b*(x^4/a)]/Sqrt[a + b*x^4], Int[1/Sqrt[1 + b*(x^4/
a)], x], x] /; FreeQ[{a, b}, x] && NegQ[b/a] &&  !GtQ[a, 0]

Rule 313

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[-b/a, 2]}, Dist[-q^(-1), Int[1/Sqrt[a + b*x^4]
, x], x] + Dist[1/q, Int[(1 + q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && NegQ[b/a]

Rule 435

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*Ell
ipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0
]

Rule 1213

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> Dist[d/Sqrt[a], Int[Sqrt[1 + e*(x^2/d)]/Sqrt
[1 - e*(x^2/d)], x], x] /; FreeQ[{a, c, d, e}, x] && NegQ[c/a] && EqQ[c*d^2 + a*e^2, 0] && GtQ[a, 0]

Rule 1214

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> Dist[Sqrt[1 + c*(x^4/a)]/Sqrt[a + c*x^4], In
t[(d + e*x^2)/Sqrt[1 + c*(x^4/a)], x], x] /; FreeQ[{a, c, d, e}, x] && NegQ[c/a] && EqQ[c*d^2 + a*e^2, 0] &&
!GtQ[a, 0]

Rubi steps

\begin {align*} \int \frac {1}{(a+b x)^{3/2} (c+d x)^{5/4}} \, dx &=-\frac {2}{(b c-a d) \sqrt {a+b x} \sqrt [4]{c+d x}}-\frac {(3 d) \int \frac {1}{\sqrt {a+b x} (c+d x)^{5/4}} \, dx}{2 (b c-a d)}\\ &=-\frac {2}{(b c-a d) \sqrt {a+b x} \sqrt [4]{c+d x}}-\frac {6 d \sqrt {a+b x}}{(b c-a d)^2 \sqrt [4]{c+d x}}+\frac {(3 b d) \int \frac {1}{\sqrt {a+b x} \sqrt [4]{c+d x}} \, dx}{2 (b c-a d)^2}\\ &=-\frac {2}{(b c-a d) \sqrt {a+b x} \sqrt [4]{c+d x}}-\frac {6 d \sqrt {a+b x}}{(b c-a d)^2 \sqrt [4]{c+d x}}+\frac {(6 b) \text {Subst}\left (\int \frac {x^2}{\sqrt {a-\frac {b c}{d}+\frac {b x^4}{d}}} \, dx,x,\sqrt [4]{c+d x}\right )}{(b c-a d)^2}\\ &=-\frac {2}{(b c-a d) \sqrt {a+b x} \sqrt [4]{c+d x}}-\frac {6 d \sqrt {a+b x}}{(b c-a d)^2 \sqrt [4]{c+d x}}-\frac {\left (6 \sqrt {b}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {a-\frac {b c}{d}+\frac {b x^4}{d}}} \, dx,x,\sqrt [4]{c+d x}\right )}{(b c-a d)^{3/2}}+\frac {\left (6 \sqrt {b}\right ) \text {Subst}\left (\int \frac {1+\frac {\sqrt {b} x^2}{\sqrt {b c-a d}}}{\sqrt {a-\frac {b c}{d}+\frac {b x^4}{d}}} \, dx,x,\sqrt [4]{c+d x}\right )}{(b c-a d)^{3/2}}\\ &=-\frac {2}{(b c-a d) \sqrt {a+b x} \sqrt [4]{c+d x}}-\frac {6 d \sqrt {a+b x}}{(b c-a d)^2 \sqrt [4]{c+d x}}-\frac {\left (6 \sqrt {b} \sqrt {\frac {d (a+b x)}{-b c+a d}}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1+\frac {b x^4}{\left (a-\frac {b c}{d}\right ) d}}} \, dx,x,\sqrt [4]{c+d x}\right )}{(b c-a d)^{3/2} \sqrt {a+b x}}+\frac {\left (6 \sqrt {b} \sqrt {\frac {d (a+b x)}{-b c+a d}}\right ) \text {Subst}\left (\int \frac {1+\frac {\sqrt {b} x^2}{\sqrt {b c-a d}}}{\sqrt {1+\frac {b x^4}{\left (a-\frac {b c}{d}\right ) d}}} \, dx,x,\sqrt [4]{c+d x}\right )}{(b c-a d)^{3/2} \sqrt {a+b x}}\\ &=-\frac {2}{(b c-a d) \sqrt {a+b x} \sqrt [4]{c+d x}}-\frac {6 d \sqrt {a+b x}}{(b c-a d)^2 \sqrt [4]{c+d x}}-\frac {6 \sqrt [4]{b} \sqrt {-\frac {d (a+b x)}{b c-a d}} F\left (\left .\sin ^{-1}\left (\frac {\sqrt [4]{b} \sqrt [4]{c+d x}}{\sqrt [4]{b c-a d}}\right )\right |-1\right )}{(b c-a d)^{5/4} \sqrt {a+b x}}+\frac {\left (6 \sqrt {b} \sqrt {\frac {d (a+b x)}{-b c+a d}}\right ) \text {Subst}\left (\int \frac {\sqrt {1+\frac {\sqrt {b} x^2}{\sqrt {b c-a d}}}}{\sqrt {1-\frac {\sqrt {b} x^2}{\sqrt {b c-a d}}}} \, dx,x,\sqrt [4]{c+d x}\right )}{(b c-a d)^{3/2} \sqrt {a+b x}}\\ &=-\frac {2}{(b c-a d) \sqrt {a+b x} \sqrt [4]{c+d x}}-\frac {6 d \sqrt {a+b x}}{(b c-a d)^2 \sqrt [4]{c+d x}}+\frac {6 \sqrt [4]{b} \sqrt {-\frac {d (a+b x)}{b c-a d}} E\left (\left .\sin ^{-1}\left (\frac {\sqrt [4]{b} \sqrt [4]{c+d x}}{\sqrt [4]{b c-a d}}\right )\right |-1\right )}{(b c-a d)^{5/4} \sqrt {a+b x}}-\frac {6 \sqrt [4]{b} \sqrt {-\frac {d (a+b x)}{b c-a d}} F\left (\left .\sin ^{-1}\left (\frac {\sqrt [4]{b} \sqrt [4]{c+d x}}{\sqrt [4]{b c-a d}}\right )\right |-1\right )}{(b c-a d)^{5/4} \sqrt {a+b x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 10.04, size = 71, normalized size = 0.32 \begin {gather*} -\frac {2 \left (\frac {b (c+d x)}{b c-a d}\right )^{5/4} \, _2F_1\left (-\frac {1}{2},\frac {5}{4};\frac {1}{2};\frac {d (a+b x)}{-b c+a d}\right )}{b \sqrt {a+b x} (c+d x)^{5/4}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/((a + b*x)^(3/2)*(c + d*x)^(5/4)),x]

[Out]

(-2*((b*(c + d*x))/(b*c - a*d))^(5/4)*Hypergeometric2F1[-1/2, 5/4, 1/2, (d*(a + b*x))/(-(b*c) + a*d)])/(b*Sqrt
[a + b*x]*(c + d*x)^(5/4))

________________________________________________________________________________________

Maple [F]
time = 0.06, size = 0, normalized size = 0.00 \[\int \frac {1}{\left (b x +a \right )^{\frac {3}{2}} \left (d x +c \right )^{\frac {5}{4}}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b*x+a)^(3/2)/(d*x+c)^(5/4),x)

[Out]

int(1/(b*x+a)^(3/2)/(d*x+c)^(5/4),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)^(3/2)/(d*x+c)^(5/4),x, algorithm="maxima")

[Out]

integrate(1/((b*x + a)^(3/2)*(d*x + c)^(5/4)), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)^(3/2)/(d*x+c)^(5/4),x, algorithm="fricas")

[Out]

integral(sqrt(b*x + a)*(d*x + c)^(3/4)/(b^2*d^2*x^4 + a^2*c^2 + 2*(b^2*c*d + a*b*d^2)*x^3 + (b^2*c^2 + 4*a*b*c
*d + a^2*d^2)*x^2 + 2*(a*b*c^2 + a^2*c*d)*x), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\left (a + b x\right )^{\frac {3}{2}} \left (c + d x\right )^{\frac {5}{4}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)**(3/2)/(d*x+c)**(5/4),x)

[Out]

Integral(1/((a + b*x)**(3/2)*(c + d*x)**(5/4)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)^(3/2)/(d*x+c)^(5/4),x, algorithm="giac")

[Out]

integrate(1/((b*x + a)^(3/2)*(d*x + c)^(5/4)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {1}{{\left (a+b\,x\right )}^{3/2}\,{\left (c+d\,x\right )}^{5/4}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a + b*x)^(3/2)*(c + d*x)^(5/4)),x)

[Out]

int(1/((a + b*x)^(3/2)*(c + d*x)^(5/4)), x)

________________________________________________________________________________________